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PREFACE
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1. INTRODUCTION

1. INTRODUCTION -

Over a period of 15 months, since June 1, 1991, the Arizona Department of
Transportation supported the R&D efforts on the development of the RHODES street
traffic control system within the Department of Systems and Industrial Engineering at the
University of Arizona. PHASE I and PHASE II(a) of this effort have been completed.
During these phases the University of Arizona has worked closely with the City of
Tucson and the Pima Association of Governments (PAG) in the development of the
RHODES concept, some preliminary algorithms, and a simulation model.

PHASE I of the RHODES project consisted of the following tasks:

Task 1(a): Develop RHODES concept

Task 1(b): Develop analysis/simulation tocls
Task 1(c): Select demonstration test grid
Task 1(d); Hold traffic control workshop

Task 2(a): Refine RHODES concepts

Task 2(b): Investigate flow optimization models

Task 2(c): Investigate intersection dispatching schemes
Task 2(d): Coordinate modeling efforts.

Tasks 1(a) and 2(a) concentrated on developing a technically sound concept for real-time
traffic adaptive control and identifying the key research problems that need to be solved.
Task 1(b) consisted of specifying the requirements for a simulation model for
demonstrating, testing and evaluating real-time control. It was decided, at least for the
short term, that modification of the TRAF-NETSIM model would provide a suitable
simulation environment. In the longer term, more advanced simulation models that allow
dynamic vehicle routing and have the ability to assess ATIS and other IVHS technologies
would be more appropriate. To this end, an investigation of object oriented traffic
simulation has been initiated.

Task 1(c) addressed the long-term project goal of implementing RHODES for the
Tucson street network. A potential test grid has been selected. The test grid offers several
interesting traffic characteristics, such as having a variety of traffic volumes, and 2 mix of
residential and commercial zones. Early selection of the test grid provides a source of




1. INTRODUCTION

real-world data for the traffic simulations and a measure against which to validate the
developed simulation model. i

Task 1(d) provided a forum of noted experts on real-time traffic control to discuss
research issues and comment on the RHODES concept. The workshop was very valuable
to the research team. It led to the refinement of the RHODES concept and identified
several new key issues.

Tasks 2(b) and (c) focused on the investigation and development of some preliminary
algorithms for intersection and network flow control. An algorithm was developed, called
COP, based on a dynamic programming formulation of the intersection control problem.
The COP algorithm provides the necessary planning horizon, approximately 5 minutes,
for integration with network flow control methods.

In addition to these tasks, a major goal of PHASE I was the development of a proposal to
FHWA on the design of a real-time traffic-adaptive signal control system. The RHODES
team led a strong consortium, that included JHK, SRI, TASC, RPI, and Hughes, and
submitted a consortium proposal to FHWA in January 1992. The proposal was not
selected for funding; the contract was awarded to Farradyne Systems in June 1992.
However, the RHODES team plans to respond to an anticipated FHWA-RFP that will
call for alternative prototype developments.

Phase II(a) is concentrated on (1) the development of some RHODES component models
and algorithms and (2) a demonstration of these algorithms, using the modified TRAF-
NETSIM simulation model. PHASE II(a) consisted of three task:

Task A: Develop algorithms for network loading and control

Task B: Demonstrate controller interface and network control
concepts

Task C: Reporting and planning

Task A addressed the investigation and development of algorithms at several levels of the
hierarchy as identified in PHASE I. The purpose of Task B is to demonstrate the proof of
concept that the RHODES approach can be implemented using existing controller
technology.

The research progress on the RHODES project has been significant. A simulation model
has been developed for testing and demonstrating real-time traffic control algorithms, and
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several algorithms have been developed. Concurrently with the further development of
the RHODES system for street network control, it is now appropriate to extend the
RHODES concept for developing a traffic control system for an integrated freeway/street
network. This final report contains the detailed results of the PHASE Il(a) effort.

The RHODES concept is depicted in Figure 1. At the highest level of RHODES is the
"dynamic network loading” model that captures the slow-varying characteristics of
traffic. These characteristics pertain to the network geometry (available routes
including road closures, construction, etc.) and the typical route selection of travelers.
Based on the slow-varying characteristics of the network traffic loads, estimates of
the load on each particular link, in terms of yehicles per hour, can be calculated.
These load estimates then allow RHODES to allocate "green time" for each different
demand pattern and each phase (North-South through movement, North-South left
turn, East-West left turn, and so on). These decisions are made at the middle level of
the hierarchy, referred to as "network flow control”. Traffic flow characteristics at this
level are measured in terms of platoons of vehicles and their speeds. Given the
approximate green times, the "intersection control” at the third level selects the
appropriate phase change epochs based on observed and predicted arrivals, of
individual vehicles, at each intersection. The RHODES architecture is modular; it
allows the accommodation of new modeling methodologies and new technologies as
they arc developed.

A significant difference between RHODES and other "real-time™ wraffic control
systems is that RHODES is being designed to accommodate real-time measurements
of traffic and to become an integral component of IVHS. For example, integration of
Advanced Traveler Information Services within IVHS will result in (1) improved
prediction and estimation of network loads, (2) will allow the ATMS system to
provide drivers with real-time information about traffic conditions, and (3) advise the
travelers of alternate routes. Priority and accommodation of public and private transit,
emergency vehicles, and commercial vehicles, can be easily integrated into the
decision-making structure of RHODES.

At the highest network loading level of the hierarchy we envision the decision time
horizons to be in hours, days and weeks. This model allows for integration of historical
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1. INTRODUCTION

data (a priori information), observed traffic flows (posterior information) and potental’
ATIS information about IVHS suggested routes and traffic conditions (congestion,
accidents and other network events) to allow prediction of near future loads and hence
exercise real-time proactive traffic conrol. The next level of the hierarchy utilizes the
predicted and estimated network loads to control traffic on a network wide basis. At this
level the network flow controller will integrate the network load information with
observations of actual volumes and flow profiles to select appropriate phase sequences
and phase lengths as well as the allowable variances to accommodate for the stochastic
nature of traffic flow on the network level. These timing decisions will be passed to the
intersection controller where decisions to shorten or extend the current phase will be
made (in a decentralized distributed fashion) based on actual observations of the current
traffic arrival pattern at each intersection. The lowest level of the hierarchy, referred to as
traffic signal actuation, is responsible for implementation of the intersection controller
decision on the signal control hardware.

1'The scope of this cffort does not include development of sn ATIS system. It does, however, include the consideration
of potential information available from an ATIS in the design of a proactive traffic control system.




2. NETWORK LOADING

2. NETWORK LOADING
2.1 A Statistical Network Loading Model

In this section, a method that uses historical data to estimate network loads is described.
The method is similar in spirit to the dynamic Bayes procedure described by Higle and
Nagarajan (1992), although it has been adapted to context of network load estimaton.
The method is an empirical procedure where the amount of data used to obtain load
estimates is determined by the quality/accuracy of the estimates being produced. Higle
and Nagarajan show that the procedure is well suited to identifying and reacting 10
changes in the underlying traffic trends, specifically wrning flow probabilities. Thus, it is
believed that this method will also be well suited to estimating network loads.

2.1.1 Empirical Bayes Estimates

The primary objective is to estimate the number of vehicles traveling on a particular link
during a particular interval of time on a particular calendar day. Let N;(¢,d) be the
number of vehicles traveling on link (i, j) during time period ¢ on calendar day d, as
observed using vehicle detectors. Assume that N, (¢,d) has a Poisson distribution with a
mean 4,(z,d). There are several points implicit in this simple assumption.

First, note that the average vehicle load on link (i, j), denoted by A,(¢,d) need not be
presumed constant over time or over calendar day. This rate typically varies by "time of
day" and "day of week". Figure 2 depicts the time varying vehicular flow on a particular
day of the week for various calendar days. It is assumed that 4,(r,d) for eachday d is
for a collection of calendar days that have essentially the same characteristics. Second,
the interval of time, Az, associated with the estimation/prediction task need not be held
constant throughout the day, but may also vary by time of day. Thus, there is sufficient
flexibility in the estimation/prediction method to allow for longer time intervals during
low use periods, and shorter time intervals during high use periods. Third, as discussed
before, the vehicular rate, N, (#,d), is generally assumed constant for a particular time
period on a particular day. Finally, note that 4,(1,d), the average vehicle loads, are the
quantities is to be estimated.
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different calendar days.

Since the mean, A,(1,d), of the Poisson distribution is unknown, a Bayesian viewpoint is
adopted and it is modeled as a random variable. For the purposes of mathematical
convenience and computational ease, assume that 4,(1,d) has a gamma distribution with
parameters &, and S8, . As data is collected the parameters of the gamma distribution will
be updated to describe A,(7,d). The mean of the resulting distribution will be used as a
point estimator for A,(1,d). Thatis, if 1,(z,d) ~ Gamma(a,,B,) , then its mean

i,dy==2 M

will be used as the point estimate of the vehicle flow rate.

The estimation procedure evolves over time in a manner that follows readily from well
known properties of the gamma and Poisson distributions. Specifically the key property
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If {N,],., are independent and identically distributed observations of a random
variable whose conditional distribution given ¢ is Poisson(with mean 4 ), and y
has a gamma distribution with parameters ¢, and §,, then the conditional
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distribution of u, given the observations {N, }:=1is a_gamma distribution with
parameters @, and J,, where

'
a,=a0+2N,andﬁ,=ﬁo+5, )

k=i
(see, for example (DeGroot, 1977), chapter 11).

When translated to the context of traffic flow estimation, this result leads to a simple
recursive procedure for estimating traffic flows over time. Here, 4 corresponds to
A,;(t,d). Thus, given initial values of the parameters of the gamma distribution, &, and
B, these vaiues are updated to reflect the observations N;(1,),/=1,...,d as follows:

4
a,=a,+ Y N;wD), 3)
i=l

B.=B,+d.

This may be accomplished recursively as:

a,=a, ,+N;(1,d-1),
4
Bi=B.,+1 @

Given a, and B, the predicted load on the forthcoming day is given by
A, d+D)=a,/B,. (5)

To ensure that the resulting estimator, a,/B,, is capable of responding to changes in the
underlying trends and responds adaptively to the quality of the estimates being produced,
it is necessary to be able to use different amounts of data for obtaining ¢, and B,. That
is, when the estimate is "good", additional data should be included so that estimates with
lower error variances will result. However, when the estimate appears to be persistently
poor, less, but newer, data should be used so that the estimators will be more responsive
to apparent changes in the underlying trends. In the next section an adaptive method for
determining the amount of data used in the estimation process is discussed.
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2.1.2 Dynamic Bayes Estimation

The estimators obtained using the updated parameters specified in (3) and (4) will be
most accurate when the underlying flow rate, 4,(1,d), is constant over calendar day, d.
However, even when the data is normalized for time of day and calendar day cycles, there
are still likely to be changes in the flow rate (e.g., seasonal tendencies, construction
obstructions, special events, etc.). In this case, it is necessary to allow the estimators to
respond dynamically to the errors observed. This can be accomplished using the dynamic
Bayes estimates proposed by Higle and Nagarajan (1992), adapted to the context of
network load esamation.

Note first that the estimate of the anticipate flow for calendar day d is based on the
observed flows in the previous calendar days. Thus, if @, and B, denote the parameters
of the gamma distribution used to describe 4,(1,d+1) after having observed
{10}, then the point estimate of A,(t,d +1) is given by

i,ad+D= %f- ©6)

d

The quality of this estimate depends on the extent to which it appears to be approximately
equal to the observed flow in that period, N (t,d +1). If N;(1,d +1) is consistent with

/'i‘, (t,d + 1), then the vehicle flow rate over time appears to be stable enough to allow the
simple update procedure described ir. (4). If N,(1,d +1) is inconsistent with i,,(t,d +1),
then steps must be taken to allow subsequent estimates to adapt to a potential change in
the underlying trend. One approach is to discard the observations used early in the
estimation process, so that the more recent observations influence the estimate more

significandy.

To determine whether or not the observation is inconsistent with the estimate, it is
necessary to obtain probabilistic statements from the Poisson distribution. Let an error
probability £, 0 < £ <1, be given and let quantities N and N be defined so that if
N,(1,d) ~ Poisson(4,(z,d)) then
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PV, Gy s N} =, :
) PN, (t.d)2 N} = -g- @

Therefore, under the hypothesis that N;;(¢,d) ~ Poisson(i‘.j (1,d)),
P{N<N,;(td)<N}=1-¢. (8)

In standard statistical tests of hypothesis, N;(z,d) is said to be consistent with i,.j (t,d) if
N <N,(t,d) < N, and inconsistent otherwise. The inconsistency is said to be persistent if
there is at least one inconsistency in the previous ¥ days, where 7 is a specified
estimation threshold. In this dynamic Bayes approach, o, and 8, are determined in one
of three ways, depending on the detection and persistence of an inconsistency.

Exhibit A outlines the dynamic Bayesian network loading algorithm. Note that at the start
of this procedure, «,_, , B,_,, and therefore iq (t,d) are available from the previous
estimate. Parameters € ,0 and Y are chosen (by the designer/user of the algorithm) to
facilitate the responsiveness of the algorithm to real-time data. As discussed above, € and
y are used to identify inconsistancy in the estimates being produced, and & denotes the
time-window of the data used for the estimation. &, and J,,, are the minimum and
maximum allowable sizes for the time window & . The parameter & is updated within
the algorithm, depending on the quality of the estimates being produced. In steps 3 and 4,
estimated o, and f3, are derived using observed data {Nij(t,l)}d

time window.

during the current
l=d-d+1

A brief discussion of Step 2 of this procedure is in order. Entering Step 2, iﬁ(t,d) has
been determined from {N,.j (1,1 )}:_‘s and is compared to the observed value N;(t,d) to
determine if & should be adjusted. Note that & is increased in Step 2 (a), decreased in
Step 2 (b), but at all times &, <6 < J,,,,. These limits are intended to prevent the use of
"too many" or "too few" observations in the computation of iq (z,d) and can be specified
at the user's discretion. In step 2 (a), the estimate is consistent with the observation, so 1)
is increased. In step 2 (b), the persistance of the inconsistancy is tested. If it is
determined that the inconsistancy is persistant, § may be decreased. Each time it is
decreased, the oldest observation is discarded and a new estimate of i,! (t,d) is computed
using the most recent observations (excluding, of course, N;(t,d)). The reduction of &

10
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Exhibit A. Dynamic Bayesian Network Loading Algorithm

Procedure: Compute /'i,.j(t,d +1)

Step 0:. Given estimates o,_;, B, iij(t,d), parameters ¥, 0<&€<1, 8, 0, O, and

the observations {N,-j @, l)};—m for time period ¢ and caledar day d,

Step 1: Define N and N according to (7).

Step 2: Determine &, the amount of data to be used in computing @, and B;:
(@) If N<N,(t,d)sN

then
é=Min(6+1,0,,,)

(b) else if N,(t,]) & [_zy_ ,W] for at least one observation [ € [d— v,d - 1],
then while N, (t,d)&[N,N| and 8> &,
0«—0-1
Q. « 04, —N;(t,d—0)
Buy & Ba -1

A,(td) 2t

ﬂd-l
Oy Oy
By < Bu_s
define N, N according to (7) using A;(t,d) and repeat Step 2 (b)
(c) else & remains unchanged.
Step 3: Compute
d
ad é—ao'*' qu(til)’

I=d-8+1

B, < B, + 6.
Step 4:Compute

i,.,.(t,d+1) &« 9—‘1.

d

i1
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terminates when either N, (1,d) becomes consistent with the recomputed esimate,
A‘U(t,d) or when_J reaches its lower limit, §_,,. When the algorithm process is in step 2
(c), inconsistency has been detected, but it is too early to tell if it is persistent. In this
case, o is neither increased nor decreased. Once 6 has been set, iy(t,d +1) is computed
using the & most recent observations, including N;(1,d). By monitoring the quality of
the estimates produced and adaptively responding to errors when they are detected, the
estimated load for the forthcoming time period, 4,(f,d +1), should more closely
approximate the load that will be observed , N;(z,d +1).

2.2 A Network Loading Example

To demonstrate both the statistical network loading model and the capacity allocation
model discussed above, a small traffic network was simulated using the modified TRAF-
NETSIM model. Figure 3 shows the layout of the traffic network. This network was
selected because it contzins a long arterial (Campbell Avenue) near the University of
Arizona football stadium!. The primary nodes of interest, those that will be used for
testing control algorithms, are numbers 335, 369, 401 and 483. The remainder of the
nodes are included to provide realistic traffic flows, i.c. platoons and non-uniform
arrivals, into the controlled area. The location of vehicle detectors in the simulation
model is consistent with the existing detector locations in the actual network. For the
purposes of this example, the conditions on the network were simulated between 11 AM
and 1 PM, a period of moderate to heavy usage.

To demonstrate the statistical network loading algorithm, the dynamic Bayes algorithm,
detectors on each major links of the network are included in the estimation. For the
purposes of presentation in this paper, the results from a single detector will be discussed
in detail. This detector is located 130 feet north of the intersection of Speedway Blvd. and
Campbell Ave (intersection 335). It includes all vehicles in all three lanes that approach
the intersection. To represent both time periods and calendar days several runs of the
simulation model were made. Each run utilized a unique random number with all other
parameters (source input rates, turning probabilities, and signal timing parameters) held
constant.

IThis network selection is intended to allow the RHODES team to be prepared for the FHWA Real-time
Traffic Adaptive Signal Control RFP for aliernative algorithms due to be announced in 1993. This type of
network/arterial will be the basis for the testing and performance competition for real-time traffic-
adaptive control algorithms.

12
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Figure 4 shows the observed number of vehicles for the eight time periods of fifteen
minutes each over thirty days (simulation runs). From these observations it can be seen
that the number of vehicles crossing the detector is essentially constant over the days and
not constant over time. To test the estimation procedure the initial estimates, &, and Bos
were selected so that the estimate would beinitially be inaccurate and the responsiveness
of the algorithm could be validated. Figure 5 shows the estimated loads over time and
day. From the Figure it appears that the estimator can overcome the large initial estimate

error and closely estimate the loads.

Figure 3. Topolocal layout of the traffic network used in the simulation
studies.

13
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SOPNYON POAIOSGO

Observed number of vehicles for eight time periods of 15 minutes

cach over thirty days (simulation runs)

Figure 4.

BONYOA poIRLINES

Estimated loads over time and day.

Figure 5.
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The performanoe of the method can be more closely studies by considering either a single
time period or a single day. Figures 6, 7 and 8 show the observed and estimated loads
over time on calendar days 0, 5 and 30, respectively. The large initial estimate error,
approximately 100% on day 0, is reduced to less than 10% afer only five days and less
than 1% ofter 30 days. Figure 9 shows the observed and ~stimted loads over calendar day
at a single time period, 1,. This figure demonstrates the ability of the method to correctly
estimate the load.

The statistical network loading model presented here is useful for estimating the expected
link volumes based on existing loop detector data. It is important to note that this model
is not based on known, or approximated, origin-destination data and hence is not an
equilibrium or assignment model. This model does address the need for a statistical
method of estimating link volumes based on loop detector data that will allow for the
statistical classification of anomalies such as non-recurrent congestion due to events such
as accidents. In these cases, alternative historical data sets can be used for the prediction
purpose. Based on this statistical foundation this model can be extended to include
equilibrium or assignment data, as well as other information that will be available
through the deployment of IVHS.

350;_ —A-— Estimated
[

300 [

3 1
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U
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200 |
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Figure 6.  Obscrved and estimated load over time on calendar day 0.
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Figure7.  Observed and estimated load over time on calendar day 5.
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Figure8.  Observed and estimated load over time on calendar day 30.
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Figure9.  Observed and estimated load over calendar day ata fixed time.
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3. CAPACITY ALLOCATION

3.1 The Capacity Allocation Model

The network loading model provides estimates of the expected link loads on the network.
These estimates are used by the capacity allocation model to determine the fraction of
time that should be allocated to each phase in order to satisfy the network demand. At this
level of the hierarchy, a uniform, fluid flow viewpoint of traffic is assumed. The solution
to the capacity allocation problem does not consider the flow of individual vehicles or
platoons between signalized intersections. It establishes general fractions of time that
must be allocated to different phases to satisfy the average demand over extended periods
of time. These fractions serve as constraints to the network coordination model and the
intersection scheduler.

Let v,denote the demand (arrival rate) for movement { at some intersection. This demand
can be derived from the predicted loads generated by the network loading model and
estimated turning probabilities!. The quantity iﬁ(t,d +1) represents the estimated
vehicular load on link (i, j) during time period ¢ and calendar day d. If p7 denotes the
probability of a vehicle on link (i, j) demanding movement m then

Vo =piA,(0,d+1) ®
is the estimated demand for movement m.

Figure 10 shows the standard labels of 8 possible movements at an intersection. Let

¢ = {i.} denote the signal phase where movements i and j are allowed. For the
purpose of this development, assume that the only possible phases at this intersection are
@0 0,5. 0 and @5, (as shown in Figure 10). Let x,, x,5, X5, and x,, denote the fractions
of the intersection capacity (green time) allocated to each phase. Then, assuming a
uniform arrival rate, the delay (Hurdle, 1984) (uniform delay per vehicle) associated with
phase ¢ is

1Yere it is assumed that the tuming probabilities are known. Estimation of these turning probabilities has
been address by Higle and Nagaragan (1992) for the case of a fully instrumented intersection. Their
approach has still to be adapted to a partially instrumented intersection.

18
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Figure 10.  Standard labels of 8 possible movements and the associated 4-
phases.

(1-x,)?
2

Y (10)

me'(l - '.'::'

D(x,)=

where s,, denotes the saturation flow rate associated with movement . Note that the

saturation flow rate must be selected to reflect the appropriate number of lanes and other
traffic considerations (grade, lane width, etc.) associated with each movement.

Given these definitions of delay, arrival rates and saturation flow rates, the capacity
allocation problem can be stated as

Minimize D(x)= Y D(x,)
all ¢

subject to
(11)
2 %=1
all ¢

x,20, allg.

For the 4-phase case depicted in Figure 10 the capacity allocation problem can be stated
as

19
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_ 2" = _ 2" 1
Minimize D(x):(l x5) 1v N 1v L -2 1v N 1v
2 a3 -] 2 (-3 (-9
+(1—-x37)2 1v N ]} +(1=-=x48)2 1v N 1v’1
2 [a-2) a-»] 2 (0= =)
(12)

subject to
Xys + Xog +Xgg HXgg =1,
%520, X620,
X520, x,420.

The capacity allocation problem, as stated here, has a quadratic objective function with a
single linear equality constraint and the usual non-negativity (inequality) constraints on

the decision variables. This form of a quadratic mathematical programming problem can
be solved using the quadratic structure of the objective function and an active set method

to manage the inequality constraints.

The capacity allocation problem (12) can be written in the form

Minimize f;—x’Qx +c’x+K
subject to (13)

ex=1,
%20, i=L..N,

where ¢’=(1 - 1) and N is the number of allowable phases. Given this formulation

the only mathematical condition necessary for a quadratic programming active set
method to be applicable is that the matrix Q be positive definite.

The capacity allocation algorithm is outlined in Exhibit B. It is assumed that an initial
starting solution is given (step 0). It is important that the initial solution satisfy the
equality constraint e’x° =1. A good candidate is

W= (14)
2.V
alg
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Exhibit B. Capacity Allocation Algorithm.

Procedure: Solve Quadratic Program Using Active Set

Step 0:. Assume x° , a starting solution, is given and feasible.

Step 1: Define W* as the set of active inequality constraints, W° = Q.

Step 2: Solve the equality constrained quadratic program:

Minimize -;— vt Oyt +cy*
subject to

=0, neW"

Step 3: Let x**' =x* + o* (" - x*) where

ot =min{o: o €[0,1], x; + (v, — x,) =0, n= L...,N}.

Step 4: Update the working set: Let j & W* denote the index of the constraint(s)

such that
k ko k kN
X +o (yj-x,.)—0

then
Wk+l - Wk U {j}-

Step 5: Release a binding constraint; Let i € W* denote the index of a constraint

such that u; <0, then
W =w* - {i}.

If , >0 for all i e W* STOP, else GO TO Step 2.

Instep 1,

the working set, the set of active inequality constraints, is initially defined to be

the empty set. It is feasible of course that one or more x. = 0. In this case it would be

necessary to define the working set as

WO ={i:x? =0,i=1..N}.

21
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In step 2, the equality constrained quadratic optimization problem is solved. This problem
can be solved using the first-order optimality conditions (Luenberger, 1984) for equality
constrained problems by solving the following system of linear equations:

Q -e -E'[(y) (-c
e’ , 0 0 1A |=|1 (15)
(E') 0o o0k, \Q

where E* is the matrix whose rows are formed by the vectors e, that are all zeroes except
for a 1 in the n™ position for n € W*. It is not necessary that the solution to (15) yield 2
solution, y* that is optimal or feasible to the inequality constrained problem.

In step 3, a line search is conducted from the current candidate solution, x*, towards y*.
Movement along this direction occurs only until either one of the non-tight inequality
constraints becomes tight or until the point ¥* is reached (in this case " =1). If one or
more of the non-tight constraints becomes tight in step 3, they are added as binding
constraints in step 4.

In step 5 a constraint that was tight is released if the associated Lagrange multiplier is less
than zero. (This condition is based on the first-order optimality conditions for inequality
constrained optimization). If none of the Lagrange multipliers are negative and no new
constraints are added to the working set, the algorithm is stopped at the optimal solution.
If the algorithm is not stopped, steps 2-5 are repeated until an optimal solution is found.

3.2 A Capacity Allocation Example

This example will utilize the results of the statistical network loading model from
Section 2.2 at the intersection of Campbell Avenue and Speedway Boulevard (node 335).
Figure 11 shows the layout of the intersection including the proportion of vehicles that
turn left, right or proceed though the intersection and the associated phase definition.
These values we determined by the City of Tucson's traffic engineering department.
Each approach has one turning lane and three through lanes. A saturation flow rate of
1800 vphpl was assumed.
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Figure 11. l.ayout of the Campbell Avenue and Speedway Boulevard
intersection.

Table 1 shows the approach volumes for each approach for thirty 15 minute time
intervals. These approach volumes are used to derive the movement demands, assuming a
4-phase control, during each time interval. The capacity allocation algorithm is used to
find the percent green allocation for each time interval. The results of the capacity
allocation algorithm are shown in Table 1.

The results of the capacity allocation algorithm must be carefully interpreted. The
numbers in the two tables cannot be directly compared since the approach volumes are
related to the traffic volumes using the turning probabilities (see Equation (9)) and the
delay is computed using Equation (10). It is also important to note into that the capacity
allocation results are to be used for providing estimates and not as the exact signal timing
parameters.
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Table 1. Approach volumes and percent green allocation from the capacity
allocation example. Each approach volume represents the number
of vehicles arriving during a 15 minute interval. The percent green
allocation is computed to minimize total vehicle delay.

Approach Volume Percent Allocation of Green
(per 15 minute period) — (per Phase)

Time d, d, ds dy Thne | Phase 15 Phase 26 Phase 37 Phase 48
1 270 416 382 224 1 | 02546 02990 02104 02360
2 270 417 384 239 2 02533 02981 0.2106 0.23719
3 266 390 37 231 3 | 02517 02945 02138  0.2400
4 270 433 383 226 4 | 02559 03010 02086 02345
s 270 416 382 234 5 | 02536 02982 02108 02375
6 266 391 373 212 6 | 02535 02963 02130 02372
7 266 391 n 235 7 | 02513 02941 02140 02406
8 270 340 384 236 8 | 02473 02895 02183 02449
9 270 393 382 239 9 02512 02950 0.2133 0.2405
10 266 382 371 217 10 | 02523 02948 02141  0.2388
11 266 329 37 251 11 | 02447 02854 02209 0.24%0
12 270 416 382 241 12 | 02530 02975 02110  0.2385
13 266 447 N 224 13 | o251 03018 02077 0.2334
14 270 341 3m 21 14 | 02485 02902 02181 02432
15 270 415 382 25 15 | 02534 02979 02109 02377
16 266 392 EXZ] 231 16 | 02518 02947 02136 02398
17 270 415 383 28 17 | 02542 02987 02105 0.2366
18 270 409 382 236 18 | 02528 02971 02116 02385
19 266 392 kY] 2 19 02527 02955 02133 0.2385
20 266 391 n 219 20 0.2529 02957  0.2132 0.2382
21 270 416 380 247 21 | 02583 02967 02115 0239
2 270 414 384 232 22 | 02538 02984 02107 0.2372
pa 270 414 384 233 3 02537 02983  0.2107 0.2373
24 270 462 38 212 24 02597 03058 02050 0.2295
25 | 20 418 38 29 25 | 02543 02990 02103 02364
26 Zio 416 383 207 26 0.2562 03007 0.2096 02335
27 210 383 K}.7] 217 27 02525 02958 02135 0.2383
28 270 468 Ky, 229 28 0.2584 0.3045 02054 0.2317
29 270 395 384 31 29 02523 02962  0.2126 0.2389
30 266 455 N 21 30 | 02581 03030 02068  0.232!
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